## David Dewhurst June 30, 2017

Let  $u \in \mathbb{R}^d$  be a unit vector. For  $x \in \mathbb{R}^d$ , define  $f(x) = \inf_{t \in \mathbb{R}} ||x - tu||^2$ . Show that f is differentiable on all of  $\mathbb{R}^d$ , and find an expression for f'(p) in terms of p and u.

*Proof.* We first find the value of t that satisfies the infimum. Expanding  $||x-tu||^2$  gives

$$||x - tu||^2 = (x - tu) \cdot (x - tu)$$
  
=  $x \cdot x - 2x \cdot (tu) + (tu) \cdot (tu)$   
=  $||x||^2 - 2t(x \cdot u) + t^2 ||u||^2$   
=  $||x||^2 - 2t(x \cdot u) + t^2$  because  $u$  is a unit vector

Differentiating, we have

$$\frac{d}{dt}||x - tu||^2 = -2(x \cdot u) + 2t = 0$$
$$2t = 2(x \cdot u)$$
$$t = x \cdot u$$

We can thus rewrite f(x) as  $f(x) = ||x||^2 - (x \cdot u)^2$ . Our task is now to find an expression for the derivative of f. We recall that, if f is differentiable at a point  $c \in \mathbb{R}^d$ , we must have

$$f(c+v) = f(c) = T_c(v) + ||v|| E_c(v)$$

where  $T_c(v)$  is a linear operator and  $E_c(v)$  is some error function such that  $E_c(v) \to 0$  as  $v \to 0$ . Now, since  $f: \mathbb{R}^d \to \mathbb{R}$ , we know that the only possible candidate for  $T_c(v)$  is  $\nabla f(c) \cdot v$ . Thus, we first compute f's gradient component-wise. Observe that since  $f(x) = (x \cdot x) - (x \cdot u)^2 = \sum x_i^2 - (\sum x_i u_i)^2$ , we have

$$\frac{\partial f}{\partial x_i} = 2x_i - 2\left(\sum x_i u_i\right) u_i \tag{1}$$

so that applying Eq. 1 component-wise and dotting the resulting vector with v gives

$$\nabla f(x) \cdot v = 2(x \cdot v) - 2(x \cdot u)(u \cdot v).$$

Now, from the definition of f we have that, for any  $c \in \mathbb{R}^d$ ,

$$f(c+v) - f(c) = ||c+v||^2 - ||c||^2 - 2(c \cdot u)(v \cdot u) - (v \cdot u)^2$$

$$= ||c||^2 + 2(c \cdot v) + ||v||^2 - ||c||^2 - 2(c \cdot u)(v \cdot u) - (v \cdot u)^2$$

$$= \underbrace{2(c \cdot v) - 2(c \cdot u)(v \cdot u)}_{T_c(v) = \nabla f(c) \cdot v} + \underbrace{||v||^2 - (v \cdot u)^2}_{R(v)}$$

We will now show that the function R(v) has the proper form. Let us rewrite R(v) as

$$R(v) = ||v||^2 - (v \cdot u)^2 = ||v|| \left( ||v|| - \frac{(v \cdot u)^2}{||v||} \right)$$

Obviously  $||v|| \to 0$  as  $v \to 0$ , so all we have to show is that  $\frac{(v \cdot u)^2}{||v||} \to 0$  as  $||v|| \to 0$ . Since ||u|| = 1, for ||v|| > 0, letting  $\theta$  be the angle between v and u we have that

$$0 \le \frac{(v \cdot u)^2}{||v||} = \frac{(||v||||u||\cos\theta)^2}{||v||}$$
$$= \frac{||v||^2||u||^2\cos^2\theta}{||v||}$$
$$= ||v||\cos^2\theta \le ||v||$$

So the function  $E_c(v)$  has the proper form, and we have that

$$f'(p) \cdot v = \nabla f(p) \cdot v = 2(p \cdot v) - 2(p \cdot u)(u \cdot v)$$

or, rather,

$$f'(p) = 2p - 2(p \cdot u)u$$